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Two new entropies are offered in this paper. Neither belongs to the traditional
conservative statistical mechanics. The first recognizes that the discovery that
there are states of granular or glassy systems which can be restricted by an
appropriate experimental pathway implies that an entropy can be defined for
them by deriving an appropriate Boltzmann equation in which the pathway to
the steady state has an increasing entropy until the state characterized by a
compactivity X=“V

“S is reached. The second problem is to consider a state where
energy flows in and flows out, leaving a steady state, e.g., a steady turbulent
flow. Time dependent correlation functions are well defined and hence a prob-
ability of the history of the system is defined. There are many ad hoc studies of
such systems. We ask whether such systems will possess an entropy defined by
the usual > P log P but now P is the probability of the entire history of the
system and the integral is over all histories.

KEY WORDS: Granular entropy; Lagrangian entropy.

1. INTRODUCTION

The concept of entropy appears not only in physics, but in many other
disciplines usually under the name of information: Shannon information,
Fisher information etc. These are related to our familiar entropy in papers
by Jaynes (1) and many others. In this paper I propose to study two different
kinds but both of physics. The first concerns purely dissipative systems
where energy is of minor importance, but the system can take up reprodu-
cible states which can be quantified. A prime example is that of a granular
system. (2) By for example shaking a powder, any movement is rapidly ter-
minated by friction, but the system can and does have a well defined
volume. Ordinary statistical mechanics of a conservative system gives a



unique state at zero temperature, but it is well known that the density of
for example deformed spheres can vary from a minimum (minimum
random closepacked) to a maximum (maximum random closepacked)
across a range of values which can be reproduced under conditions dis-
cussed below. Such a system has no energy and (though it is rather mea-
ningless) zero temperature. I will show that an appropriately prepared
powder has an entropy which satisfies the essential Boltzmann structure
that under the appropriate disturbance (to be developed in detail below),
this entropy always increases “S

“t \ 0 until a distribution is achieved wherein
“S
“t=0 and the system has a well defined ‘‘temperature’’ which I call the
compactivity X,

X=
“V
“S

. (1.1)

Note that this is very different from conventional statistical mechanics
because for rigid perfectly rough grains, once established into a volume V
and at the reversible curve, are indifferent to pressure changes. Applying
external or body forces does not affect the configuration, but the configu-
ration is essential to be able to work out the force distribution resulting
from applied forces. The second new entropy stems from the fact time
dependent correlation function are now commonplace in experimental
physics and just as for example a density correlation function

Or(r) r(rŒ)P=F r(r) r(rŒ) e−
H
kT d(all), (1.2)

a time dependent correlation function

Or(r, t) r(rŒ, tŒ)P=F r(r, t) r(rŒ, tŒ) P([r]) d(all), (1.3)

where P([r]) gives the distribution in time of all the coordinates (here
generally labelled [r]) specifying the system. For example a harmonic
oscillator x(t) in a Brownian heat bath can have an equilibrium distribu-
tion

e−
mx2

2kT, (1.4)

but the distribution of the whole trajectory of the motion

mẋ+w 2
0 x=g (1.5)
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where g is noise

Og(t) g(tŒ)P=Dd(t− tŒ) (1.6)

or

(imw+w20) x(w)=g(w) (1.7)

Og(w) g(wŒ)P=Dd(w+wŒ) (1.8)

from

P([g])=e−F
dw
D |g(w)|

2
(1.9)

hence

P([x])=Je−F
dw
D (m

2
w
2 |x|2+w40 |x|

2) (1.10)

where J is the normalisation (=Jacobian g? x). The distribution (1.4) is
for any one time in the equilibrium state. The distribution (1.10) gives the
probability of finding an entire trajectory. Expressions like (1.10) appeared
long ago in Dirac’s book (3) in

exp 1− i
(
F L2 (1.11)

and are familiar from the treatment of Brownian motion by a (real)
Feynman path integral. Equation (1.10) is of course very simple, but what
about a non-linear dissipative equation like Navier–Stokes for a stirred
liquid. In a general notation, B is friction, C stirring

“Ak
“t

+BkAk+CkjlAjAl=gk(t) (1.12)

and g has some noise distribution. For a steady state there will be a prob-
ability distribution for Ak=ak, F(...ak...) but this will be quite different for
a driven, non conservative, system in comparison to the exp(−H/kT)) of a
Hamiltonian system. From F one can derive an entropy via Boltzmann’s
formula, and a rate of entropy production: however there must be a
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probability P([A]) which gives the whole history of the system. If one has
a P, is there a significance to

S=−F P log PD
w

dA(w)? (1.13)

Clearly S is not the conventional entropy, but it is an ‘‘information’’ and
we can speculate that P([A]) can describe a ‘‘steady’’ ensemble of fluctua-
tions, e.g., a turbulent flow in a pipe with time dependent correlation func-
tion Ou(r, t) u(rŒ, tŒ)P which is a function of t− tŒ alone. Can S be useful?
And how? We emphasize that although steady but not equilibrium systems
have been studied many years ago, notably by Onsager, they concern
entropy production (e.g., Jaynes (1)), and as such strive to extend established
thermodynamics. Here we study the disorder of a steady distribution, i.e.,
an ‘‘entropy’’ not an entropy production. The question is as to whether the
quantity in Eq. (1.13) is useful in the evaluation of the distribution function
P. It is indeed the case of a problem arising in the self-consistent expansion
of the equation for (4.39). It has been found, in McComb’s thesis (4) that
modelling the steady state of a non-linear equation such as (1.12) by a
Fokker–Planck structure contains an arbitrary degree of freedom which
can be fixed by assuming that the entropy of the unresolved parameter of
the steady distribution function is maximized. Explicitly, if the steady solu-
tion of (1.12) is F(A), and we model by

C
k

“

“Ak
1Dk

“

“Ak
+wkAk 2 F(A)=0 (1.14)

we must find two quantities Dk and wk. One equation is easily found, but
not the second. McComb proposed that

S=−F F log F=S(D, w) (1.15)

is maximized by the best w

“S
“wk

=0. (1.16)

Details of this procedure are in McComb’s book ‘‘The Physics of Fluid
Turbulence.’’ (4) Here we ask: instead of F(Ak) can we consider P([A]), i.e.,
P(...Ak w...) the distribution of the whole history of the motion, and the P
of (1.13) in analogous form to (1.16). Note that there is a considerable
literature which uses such distributions but is focussed on entropy
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production, which is not what studied here, where Fokker–Planck
(Hermite) expansion contains an arbitrary parameter and a method has the
power to fix the parameter. The position adopted is that this parameter is
chosen to minimize the information in the distribution. We emphasize that
this is to get a ‘‘best solution;’’ it is not a new physical principle of entropy
production.

2. THE ENTROPY OF A SYSTEM DOMINATED BY FRICTION

This section will be devoted to the entropy of powders, but there are
now several papers which use computer simulation to explore related
systems. Some years ago, Edwards and Oakeshott proposed (5) that a gra-
nular system which was ‘‘jammed,’’ i.e., each grain is locked into position
by its neighbours and which took up a configuration determined by its
history but reproducible, would have a distribution controlled by its
volume. Suppose the grains are specified by their contacts with their
neighbours Cab, then the volume would be a function of the Cab’s. Call it
W. Edwards and Oakeshott postulated that the microcanonical ensemble
would be

eS F d(V−W) G DCab, (2.17)

where G constrains the grains to touch and V is the volume. Here

S=log F d(V−W) G DCab. (2.18)

In thermodynamics, entropy and energy are measured in different units so
one needs Boltzmann’s constant

S=k log F d(E−H(p, q)) Dp Dq. (2.19)

Here it is not necessary, but it makes the formulae more recognisable if we
write

S=l log F d(V−W) G DCab. (2.20)

This now can go to the canonical form

e−
Y
lX=F e−

W
lXG DCab, (2.21)
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where

X=
“V
“S

, (2.22)

and

Y=V−XS. (2.23)

Studies using computer simulations have shown this formulation really
works (see, e.g., Behringer (6) and references therein), but it has been repea-
tedly criticised as a mere hypothesis without a proof. I now discuss what a
proof would mean, and then give a proof within the discussion given.

3. THE ‘‘SECOND LAW OF THERMODYNAMICS’’ DERIVED FOR

POWDERS

Consider the powder to be grains of high friction and almost incom-
pressible. I say ‘‘high’’ and ‘‘almost’’ for one has to have a way of an
external agency to rearrange the grains. The first systematic exploration of
this by the Chicago group (7) tapped a column of grains a fixed number of
times, but in different runs used different forces. After destroying the initial
low density state, it was found that the density lay on a reversible curve, so
for a given N taps of force C, the density was r(N, C). Here are some
curves of recent work in Cambridge on the conductivity (’ density) of
anthracite, vibrated with an amplitude A and frequency w. The C and the
A overcame the friction in certain places, but the movement is stifled by the
friction. But different C or A produce more or less rearrangement, giving
Fig. 1. The amplitude must not be so violent as the totally disrupt the
powder, which is the case of XQ.. To analyze this situation recall the
classic derivation of Boltzmann. He said: suppose a gas has a low enough
density so that only two body collisions matter. This surely can be ar-
ranged. Suppose that at the collision no memory persists, the stosszahlan-
satz, surely this must also be fine, but many lives have been wasted worry-
ing about it. Then, if f(r, v) is the probability of finding a molecule with
r, v

“f
“t
+v
“f
“r
+F K(v, v1; vŒ, v

−

1)(f(v) f(v1)−f(vŒ) f(v −1)) d(all)=0. (3.24)

Boltzmann introduced

ff1
fŒf −1

=x> 0 (3.25)
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Fig. 1. Normalised conductivity fraction as a function of the dimensionless acceleration
amplitude for grains of different sizes. The packings were prepared in a low packing fraction
state by sequential deposition. The acceleration amplitude was first slowly increased and then
decreased. The conductivity fraction was recorded after 105 taps at each value of the accelera-
tion amplitude. The lower branches are irreversible and depend on the deposition history and
particle size. The upper branches for grains of different sizes are reversible, i.e., upon sub-
sequently raising the value of the acceleration amplitude again, the conductivity fraction
retraces the values measured on the downward trajectory.

and

S=−k F f log f (3.26)

and by exploring the symmetry of K̃ showed that

dS
dt
=F K̃(x−1) log x, K̃ > 0 (3.27)

and therefore, since

(x−1) log x \ 0, (3.28)

dS
dt

\ 0. (3.29)
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K̃ contains the conservation of energy

v2+v21=v −2+v −21 (3.30)

and hence dS
dt=0 when f ’ eEv

2
or

f=e−
mv2

2kT (3.31)

in the usual notation and identification.
Clearly a granular system cannot operate 2-body contacts! In fact

Newtonian force analysis shows that on average only four contacts are
needed (and I believe it will always be exactly four but don’t develop that
here). it is easier to draw in 2D when three contacts obtain. A typical
picture is Fig. 3. Concentrate attention on a, b1, b2, b3. If all the others are
fixed, these four can be moved around within certain limits. Suppose then
that inflicting an external perturbation on the system finds a region, such
as our a, b1, b2, b3, wherein the threshold of friction can be overcome, but
which leaves the surrounding matrix below threshold. Suppose one asso-
ciated a volume Wa with the configuration of a, b1, b2, b3. Then Wa is
conserved when the particular tap or vibration is imposed, but the actual
configuration of Wa(a, b1, b2, b3) is changed to WaŒ. This will happen
throughout the system, but the overall volume is unchanged

CWa=WaŒ. (3.32)

Thus we can construct a Boltzmann equation with the probability fa(Wa)
of finding a configuration Wa, providing that we can associate a Wa with
the particle a. If this is so, then

“fa

“t
+F K(fafb1fb2fb3−faŒfb

−

1fb
−

2fb
−

3)=0 (3.33)

v

v

v’

v’1 1

Figure 2.
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Fig. 3. First coordination shell of a reference grain in the ‘‘fixed’’ cage of second nearest
neighbours.

where K is the kernel which depends on N, C or A, w or whatever mecha-
nism is being used. K contains (3.32). Hence the solution must be

fa=e
Y−Wa

X (3.34)

where X=“V
“S as expected by Edwards and Oakeshott.

(5) This solution is the
canonical ensemble when the microcanonical ensemble will be d(V−W)
andW will be ;Wa. Further to this however is that a good approximation
toWa can be derived in terms ofWa · · ·Wb3 where theWa carry the label of
the one grain via the tensor Faij. In Fig. 4 we introduce Ra which is the cen-
troid of the contacts of a with b1, b2, b3. Then if Rab=Ra−Rb

Faij=C
b

(Rai −Rbi )(R
a
j −Rbj ) (3.35)

a good approximation to the area (volume) of the system is

W=2C
N

a

`Det Faij. (3.36)

Exact expressions can be obtained by Voronoi or Delaunay methods, but
these do not have a single label. Another exact method has been given by
Ball and Blumenfeld (9) which is appropriate to granular systems but is
more complicated than the proposal (3.36). Experiments on packed grains
by Brujic (11) show that (3.36) is a very good approximation to the volume
of the system and we adopt it here to justify (3.33). This enables us to
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Fig. 4. Centroids of contact in the first coordination shell of a reference grain a.

consider the probability of the particular configuration of Fig. 5 to be
fafb1fb2fb3. Other configurations will have the appropriate number of f’s.
Notice the key point is that there is a definite volume V(A, w) when A and
w are applied indefinitely. If a new volume is the result of AŒ, wŒ, then when
these parameters cease and one returns to A and w, one returns to V(A, w).
This is the meaning of the reversible curve. Since there is a definite volume
it means that the Mohr–Coulomb or similar criteria which tell one where
rearrangements take place when A, w are applied, lead to the distribution
of regions (a1 · · · ai). We do not need to know where these are, or the
detailed kernel K, to obtain the equivalent of an H-theorem, but of course
if we wanted a fuller description of the physical processes we would need
these. This is exactly the same as in the conventional Boltzmann equation.
This can be considered for the whole material in the volume V. Applying
A, w or N, C one finds a series of domains whose threshold is breached
and which rearrange. The steady state has at A, w

V= C
domains

Wai, (3.37)

i.e.,

P=e
Y−;ai

Wai

X (3.38)

and X is X(A, w) hence S=S(A, w) and V=V(A, w) as found in experi-
ment. Having established that one can now effect many of the standard
problems of statistical mechanics such as miscibility, stress propagation (8)

and so on.
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Fig. 5. Domains in the given volume V.

4. LAGRANGIAN ENTROPY

I use this phrase to contrast the idea of an entropy of an entire
dynamical history which is steady in time, but contains all the time depen-
dent correlation information, as in the example discussed above. Thus in
contrast to the normal entropy which only discusses the values of the
system at one definite time, the ‘‘Lagrangian Entropy’’ does not need to be
defined in Hamiltonian system, and indeed seems most useful in systems
where energy enters by some mechanism such as stirring, and leaves via
friction. These can of course be tackled in the usual structure so that in
(1.12) one can seek a P(..., Ak,...; t) such that

“P
“t
+C

k

“

“Ak
(Bk Ak+Ckjl AjAl)+gk

“P
“Ak

=0 (4.39)

when averaged over g gives (using same symbol P)

“P
“t

−C
k

“

“Ak
Dk
“P
“Ak

+C
k

“

“Ak
(BkAk+CkjlAjAl) P=0. (4.40)

From this a transport equation can be deduced for

|Ak |2=fk (4.41)

say

“fk

“t
+Bkfk+F Kkjlfjfl−F Kjklfjfk−F Kjlkfkfl=Dk (4.42)
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where Bk gives loss due to friction, Dk the input via g and K transports the
probability (or energy, or fluctuations according to what |Ak |2 represents
physically. The derivation of such an equation is given in McCombs book
and recently renewed in detail by Edwards and Schwartz (10) and I will not
repeat it here. In the steady state, provided the kernel K can be produced,

Bkfk+F Kkjlfjfl−F Kjklfjfk−F Kjlkfkfl=Dk (4.43)

summarizes the problem and ref. 10 gives a derivation of the kernel in
terms of the effective lifetime of a mode k, wk. Assume this derivation is
sound, we find that in KPZ for example B, D do not dominate the power
law region of the solution, and

F Kkjlfjfl−F Kjklfjfk−F Kjlkfkfl=0 (4.44)

gives an excellent value for the index. The problem in such a derivation is
that the model transport equation is

“P0
“t

−F
“

“Ak
1Dk

“

“Ak
+wk Ak 2 P0=0 (4.45)

where fk is
Dk
wk
. Thus one expands (4.39) around (4.42) and finds a best self-

consistent fit. The form (4.42) is the most general possible model from the
point of view of making an expansion possible and one can fit

F P=1 (4.46)

F Ak Aj P=d(k+j) fk (4.47)

but one needs another condition to get wk and some mean life-time argu-
ment seems the obvious way to go. However Edwards and Schwartz (10)

show that it is really rather difficult in situations such as fluid turbulence to
define wk from (4.42) and it is better to work from the four-dimensional
equation for OA(r, t) A(rŒ, tŒ)P, i.e.,

OAkwAjsP=d(k+j) d(w+s) Fk, w. (4.48)
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Use capital letter K for k, w. We want FK and clearly will need a DK to
replace Dk and an W0K to replace iw+B k. The equation of motion now
becomes

C
K

“

“AK
1W0KAK+CMAA−f2 P=0. (4.49)

A neat way to build up the analogue to (4.42) is to add a dimension s and
consider our d+1 dimensional problem evolving in the s dimension, i.e.,

“AK
“s

=5W0KAK+CMAA−f+g6 (4.50)

where OgP=0 and

OgK(s) g−K(sŒ)P=DK d(s−sŒ). (4.51)

A little problem here f is not dependent on s and hence is a quenched
variable. Proceeding as before we reach

W0KFK−2 C
MM
W+W+W

FF−C
|M|2

W+W+W
FF=

D0

W−K
. (4.52)

The strange fact is that the expansion (4.52), when the full series is
employed is valid for any Wk. So we need another criterion for the best Wk.
We emphasize here that if we calculate S form P it is not related at all to
entropy production, it is simply a measure of the information in P and will
be S(f, W). It seems an interesting hypothesis to try “S

“W=0 as defining the
missing equation for W. If we do a crude version with W=iw+wk this
reduces to “S

“wk
where S is now obtained from the steady distribution. This

has been successfully applied by Edwards and McComb to evaluate the
front-factor in Kolmogoroff turbulence and is described in McComb’s
book on turbulence (4) cited in Section 1. An obvious proposal is to use the
power expansion for P which is

P=P0 11−C
MAJALA−K
(; W) AK

+·· · 2 (4.53)

to evaluate S and apply

“S
“W

=0 (4.54)

New Kinds of Entropy 41



or if we do a crude version where W=iw+wk

“S
“wk

=0 (4.55)

This has been successfully applied by Edwards and McComb (12) and is
developed in McComb’s book on turbulence. (4) But what about histories?

We now reach the difficult point. Why should S be maximized? Is it
possible to produce a Boltzmann like argument that “S

“s \ 0 reaching a
maximum at an expression analogous to e−

H
kT. The only way I can see of

doing this is to consider ‘‘s’’ as a representation of (irrelevant) boundary
conditions, meaning that the ensemble of systems which have different
initial conditions or different but irrelevant boundary conditions will ‘‘fill’’
d+1 dimensional space as fully as possible. The key point here is that
conventional statistical mechanics has concentrated on Hamiltonian
systems. The real world of friction and random inputs does not have
theorems. it can only be described by explicitly derived transport equations.
We have shown that a much more general approach should be possible, an
approach which cannot be a naive extension by Hamiltonian statistical
mechanics.
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